Impressionen von der GeoPython 2019 an der FHNW in Muttenz

Die Programmiersprache Python hat sich definitiv als wichtiges Werkzeug in der Geoinformatik etabliert – es führt kaum mehr ein Weg an ihr vorbei. Eine schier endlose Anzahl von Bibliotheken steht für die Erfassung, Bearbeitung und Analyse von Geodaten zu Verfügung.

Auch an der Konferenz GeoPython 2019 gab es eine Vielzahl von spannenden Neuigkeiten und Beispiele von Anwendungen von Python in der Geoinformatik. Vor allem Aspekte des maschinellen Lernens und der künstlichen Intelligenz waren ein dominantes Thema. Nicht nur in den Vortragsräumen, sondern auch in den animierten Gesprächen während der Kaffeepausen. Ich bin gespannt, wohin hier die Reise gehen wird. An der GeoPython 2020 werden wir sicher wieder etwas mehr erfahren.

Mich hat die Konferenz zunächst zu einem Blick in die Vergangenheit motiviert: 2008 hielt ich einen Vortrag zur Verwendung von Python, Eclipse und PyDev anlässlich einer Veranstaltung des ESRI User Forums. Verrückt, wie die Zeit vergeht.

Publikation: Das Schweizerische Gletscherinventar als Produkt des swissTLM3D

Das während den letzten Jahren aufgebaute neue Topografische Landschaftsmodell (swissTLM3D) der swisstopo löste das alte Modell VECTOR25 als Basis der topografischen Grundlagendaten der Schweiz ab. Neben der konsequenten Verwendung der dritten Dimension für alle Geometrien und die deutlich höhere Erfassungsgenauigkeit des swissTLM3D verglichen mit dem VECTOR25 ist der Wechsel zum Topografischen Landschaftsmodell zentral.

Im Gegensatz zum VECTOR25 welches sich historisch bedingt an der kartografischen Repräsentation orientierte, beschreibt das neue swissTLM3D die effektive Lage der Objekte im Raum. Aspekte der Generalisierung und Verdrängung für die kartografische Darstellung werden separat der Grundlagendaten beschrieben. Die strengen topologischen Regeln des swissTLM3D garantieren zudem eine zusätzliche Qualität der Daten.

Dieser Wechsel von einem kartografisch basierten Modell zum Landschaftsmodell ermöglicht es, einzelne Geometrietypen des TLM als Basis für weitere analytische Arbeiten zu verwenden. Im Rahmen des Aufbaus der neuen Datenbank für das Gletschermonitorings Schweiz (GLAMOS) wurde in Kollaboration zwischen swisstopo und der Glaziologie der ETH Zürich die Objekte «Firn und Eis» der Topic Bodenbedeckung des swissTLM3D als Basis für das laufend aktualisierte Schweizerische Gletscherinventar (SGI) spezifiziert und implementiert.

Ab dem Release 2019 des swissTLM3D könne die Objekte «Firn und Eis» als Gletscherinventar verwendet werden. Und mit dem geplanten Release 2020 und dem damit verbundenen Abschluss der Aufbauarbeiten des swissTLM3D wird ein weltweit einmaliges Gletscherinventar vollständig erfasst zu Verfügung stehen.

Die Publikation Das Schweizerische Gletscherinventar als Produkt des swissTLM3D von Yvo Weidmann, Hans Bärtschi, Stefan Zingg und Emanuel Schmassmann beschreibt ausführlich das Vorgehen welche für die Implementation des SGI in das swissTLM3D nötig war und gibt einen Ausblick über die Möglichkeiten und Zukunftsaussichten dieses Datensatzes.

Mehr Informationen zu diesem Thema, dem Gletschermonitoring und den Möglichkeiten findet man auch im Beitrag Gletscher in Echtzeit beobachten der ETH-News von 2018.

Leitung und Betreuung von Datenintegration in Geoportal des Bundes

Sektion Hydrogeologische Grundlagen, Bundesamt für Umwelt (BAFU)
2016 -2018
In Zusammenarbeit mit Digikarto

Die Bundes-Geodaten-Infrastruktur (BGDI) dient als Drehscheibe für alle Geodaten, welche durch das Bundesgesetz über Geoinformation (Geoinformationsgesetz, GeoIG) beschrieben werden, wie auch für alle weiteren Daten, welche von bundesweitem Interesse sind. Darunter fallen auch Daten aus dem Bereich der Hydrogeologie.

Um diese Daten der breiten Öffentlichkeit und interessierten Kreisen zur Verfügung zu stellen, bietet sich das Geodatenportal des Bundes an.

GeoIdee hat die Integration dieser Daten in die BGDI koordiniert und betreut. Dafür mussten die Daten die hohen Anforderungen der Koordination, Geo-Information und Services (KOGIS) erfüllen.

Beschreibung

Der erste Schritt in diesem Projekt war die Überarbeitung der Qualität der Daten der Sektion Hydrogeologische Grundlagen des Bundesamtes für Umwelt (BAFU), damit sie für die Publikation in der der BGDI zu übernommen werden konnten.

Neben der Datenqualität galt es aber auch, ein entsprechendes kartografisches Darstellungsmodell für die Daten zu erarbeiten. Im Falle der Grundwasserkörper musste im kartografischen Modell beispielswese eine Generalisierung der Daten bei unterschiedlichen Massstäben berücksichtigt werden.

Die gesamte Integration der Daten wurde über die entsprechenden Einträge im geografische Datenkatalog der Schweiz (geocat) abgewickelt. GeoIdee übernahm für diesen anspruchsvollen Schritt die Projektleitung und Koordination der verschiedenen beteiligten Stellen (Datenherr, Datenlieferant und KOGIS).

Neben der Leitung und Koordination der Arbeiten mussten die Daten auch auf die inhaltliche und geometrische Qualität geprüft werden. Bei den komplexen Daten mit unterschiedlichen Abhängigkeiten der Karstgewässer wurde zusammen mit dem Datenproduzenten, dem Schweizerischen Institut für Speläologie und Karstforschung (SISKA), und dem KOGIS eine Methode entwickelt, um die mehrdeutigen Abhängigkeiten zwischen Karstquellen und Einzugsgebieten auch im Geodatenportal anzeigen zu können.

Neben der reinen Darstellung im Geoportal wurden für die Datensätze auch die Web-Map-Services (WMS) integriert. So können die Daten von beliebigen WMS-Clients genutzt werden. Zusätzlich können sie auch über das Geodatenportal heruntergeladen und für eigene Arbeiten verwendet werden.

Weiterführende Informationen

In die BGDI integrierte Daten zu Karst und Karstgewässer

Link zu geocat.ch und Karst

In die BGDI integrierte Daten zu Grundwasserkörper

Link zu geocat.ch und Grundwasserkörper

Beleuchtungsmessung Standflächen Flughafen Zürich

Flughafen Zürich AG
2016 – 2018
Ein Projekt der Arbeitsgemeinschaft MovingSensors
(GeoIdee, KSL Ingenieure AG, MESSmatik AG)

Flughäfen müssen bei der Ausleuchtung von Flugzeugstandflächen die Richtlinien des Bundesamts für Zivilluftfahrt (BAZL) einhalten. Für die Nutzung dieser Standflächen muss regelmässig beim BAZL eine neue Bewilligung eingeholt werden. Am Flughafen Zürich wurde die dafür nötige Messung bislang manuell durchgeführt.

GeoIdee entwickelte im Verbund mit MovingSensors massgeschneiderte Messelektronik und -software zur gleichzeitigen Messung von Beleuchtungs- und Blendwerten. Mit einem ferngesteuerten Fahrzeug wurden die Ausleuchtungswerte in fünf Richtungen auf grossen Flächen innerhalb kurzer Zeit erfasst (1 ha/15 min). Die Rohdaten werden im Anschluss an die Messfahrt automatisch über eine Datenbank ausgewertet und grafisch sowie tabellarisch für die weiteren Arbeitsschritte aufbereitet.

Beschreibung

Der eigens für diese Anwendung entwickelte Messkopf misst in Kombination mit einem real-time-kinematischem GPS (RTK-GPS) und einer Frequenz von 10 Hz simultan das einfallende Licht von fünf Seiten (vorne, hinten, rechts, links und nach oben in Fahrrichtung des Fahrzeuges).

Die Daten des nach oben blickenden Sensors werden für die Ausleuchtung der Gesamtfläche verwendet. Die seitlich blickenden Sensoren werden für die Bewertung der möglichen Blendung der Piloten verwendet.

Zudem wird mit zwei Kameras, welche nach vorne und nach oben blicken, die Situation erfasst. So können nachträglich detaillierte Beurteilungen von Hindernissen oder Artefakten durchgeführt werden.

Fahrt entlang einer Messlinie und kontinuirliche Messung des einfallenden Lichts an allen fünf Sensoren.

Mit dem Fahrzeug und dem auf 2 m Höhe montierten Messkopf wird der vorgegebene Messraster von 5 x 5 m mit einer durchschnittlichen Geschwindigkeit von 2 m/s abgefahren. Dies entspricht einer Messung alle 20 cm in den fünf Richtungen sowie zwei Kontrollbildern in zwei Richtungen. Mit der gegebenen Geschwindigkeit und Rasterweite kann in rund 15 Minuten eine Fläche von einem Hektar erfasst werden.

Die Daten werden im Messkopf und in einer Datenbank auf einem Laptop gespeichert, wo sie im geografischen Raum dargestellt werden und der Navigation des Fahrers dienen. Die Darstellung der Messwerte erlaubt zusätzlich auch eine direkte Kontrolle der Daten während der Messfahrt.

Darstellung der Rohdaten des nach oben blickenden Sensors während der Fahrt (grün = dunkel, rot = hell).

Die erfassten Rohdaten werden im Anschluss an die Messfahrt automatisch über die Datenbank ausgewertet und grafisch sowie tabellarisch für die weiteren Arbeitsschritte zu Verfügung gestellt.

Weiterführende Informationen

Projektseite von MovingSensors

Publikation: Temporale Metadaten swissALTI3D

Mit der immer besseren räumlichen Auflösung der Höhenmodelle der swisstopo werden auch die Begehrlichkeiten immer grösser. Das swissALTI3D mit einer Rasterweite von 2m hat eine solch eindrückliche räumliche Auflösung und Präzision, dass es immer interessanter wird, auch verschiedene Zeitstände dieses Höhenmodelles zu vergleichen. Wo hat sich die Oberfläche wie verändert? Gerade die Glaziologie ist sehr interessiert an möglichst genauen Veränderungen der Gletscheroberflächen.

Aber sind solche Vergleiche und Berechnungen mit dem swissALTI3D überhaupt zulässig? Wie weiss der Benutzer, aus welchem Jahr die zu analysierenden Gitterzellen stammen? Was sagt uns das Release-Jahr der Höhenmodelle?

Ohne sehr detaillierte Kenntnisse über die eigentliche Struktur des swissALTI3D, die Art der Herstellung und der Überarbeitung sowie die möglichen Fallstricke sind solche Analysen nicht durchzuführen. Oder sie führen schnell zu falschen Interpretationen und Schlüssen.

Zusammen mit den Verantwortlichen der swisstopo wurde eine Methodik entwickelt, wie der Faktor Zeit als zusätzliche Dimension bei der Arbeit mit dem swissALTI3D verwendet werden kann und sollte – nachzulesen in der Publikation Temporale Metadaten swissALTI3D von Y. Weidmann, F. Gandor, und R. Artuso im Geomatik Schweiz 10/2018.