Multi-temporal UAV-survey of a calving glacier in Northwest Greenland

Yvo Weidmann, Guillaume Jouvet, Takahiro Abe, Martin Funk, Julien Seguinot, Shin Sugiyama

Agenda

- Location and motivation Bowdoin Glacier (NW Greenland)
- Requirements, choice, type and assembly of used UAV
- Ground Control Points
- Selection of flight plans
- Some first results
- Summary

Location Bowdoin Glacier (77° 42' N; 68° 35' W)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Motivation Bowdoin Glacier

Science:

- Processes of sea glaciers
- Modell of the calving front

Facts:

- Retreat after 2008
- Installations at the calving front
- Easy access
- 24h daylight

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Expeditions 2014, 2015, 2016

• Participating Universities:

- Institute of Low Temperature Science Hokkaido University (Japan)
- Laboratory of Hydraulics, Hydrology and Glaciology ETH Zurich

• Various experiments and measurements:

- Drilling of 3 boreholes of appr. 300m depth and instrumentation
- Collection and maintenance of drill sites (water pressure, deformation, temperature)
- Collection und maintenance of several timelaps cameras
- Permanent GPS stations (with local reference station)
- Seismic and Infrasound arrays (on and off glacier)
- Interferometric terrestrial radar during expedition (2016)
- UAV-based surface models and orthophoto mosaics of the calving front (2015 experimental, 2016 productive)

Requirements for a UAV at Bowdoin

Requirements:

- Flights > 50 kilometres autonomously and out of sight
- Flight height up to 500 meters above ground
- Payload > 0.5 kg to 1.0 kg
- Arctic conditions (wind, camp, no workshop, ...)
- Easy to repair, open configuration and documentation

No suitable commercial UAV -> Homemade!

Used framework:

- Skywalker X8 fix wing (2.1 m wingspan)
- Pixhawk Autopilot
- APM:Plane und MissionPlanner as software base

VGC 2016

7

Choice, type and assembly of used UAV

The Cryosphere, 9, 1-11, 2015 www.the-cryosphere.net/9/1/2015/ doi:10.5194/tc-9-1-2015 © Author(s) 2015. CC Attribution 3.0 License.

UAV photogrammetry and structure from motion to assess calving dynamics at Store Glacier, a large outlet draining the Greenland ice sheet

J. C. Ryan¹, A. L. Hubbard², J. E. Box³, J. Todd⁴, P. Christoffersen⁴, J. R. Carr¹, T. O. Holt¹, and N. Snooke⁵

¹Centre for Glaciology, Institute of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, SY23 3DB, UK ²Department of Geology, University of Tromsø, 9037 Tromsø, Norway

³Geological Survey of Denmark and Greenland, Copenhagen, Denmark

⁴Scott Polar Research Institute, University of Cambridge, Cambridge, UK

⁵Department of Computer Science, Aberystwyth University, Aberystwyth, SY23 3DB, UK

Correspondence to: J. C. Ryan (jor44@aber.ac.uk)

Laboratory of Hydraulics, Hydrology and Glaciology

Assembly of the homemade UAV

Fully configurable, interexchangeable and open system based on standard components!

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

8

VGC 2016 Bergen

ETH

Camera releaser, flexibility, Pixhawk

• StratoSnapper2, Pixhawk, APM:Plane

- Universal camera releaser for most camera models and types
- Simple and robust, IR- or cable-based
- Calibration and triggering with servo signal of Pixhawk
- Individual log entry with X, Y, Z, Roll, Pitch und Yaw
- CAM,420509800,1853,77.69099,-68.45031,230.54,31.97,5.64,16.35,244.12

Choice of camera

Sony α6000 E-Mount camera mit APS-C-Sensor

Sensor resolution: 24 Megapixel, Raw Lens: 16mm, f2.8 Weight: 344g + 67g (Total ca. 450g) IR- and cable-based trigger

Sony α7 E-Mount Full-Frame Mirrorless Camera

Sensor resolution : 36 Megapixel, Raw Lens: 35mm, f2.8 Weight: 625g + 120g (Total ca. 750g) IR- and cable-based trigger

(4.99"

Requirements UAV flight plans and processing

• Processing

Horizontal resolution <= 10cm ground sampling distance (GSP) Vertical resolution <= 50cm (about 3 to 4 times GSP)

• Image block

Overlap along image strip > 85% Overlap cross image strip > 70%

Main flight plan

Footprint ca. 270 x 390m -> Flight height 250m above ground Horizontal resolution appr. 7cm (GSD)

Average cruising speed appr. 15m/s

Distance between images along strip appr. 20m (>= 1sec flight time)

Distance between image strips appr. 100m

11

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Ground control points – Types and challenges

- Stable Ground Control Points (GCP) at both sides of the glacier:
 - No stable GCP at the right side of the glacier (2015)
 - Many stable GCP at both sides of the glacier (2016)
- Moving GCP on glacier

Ground control points – Moving points

- Moving GCP on the middle moraine $\sim 1 2m$ / day
- Permanent GPS stations on the glacier
- 6 8 GPS readings of all GCP on the glacier
- Linear interpolation X,Y, Z of GCP for each UAV flight

Laboratory of Hydraulics, Hydrology and Glaciology (VAW)

Bergen

Ground control points – Moving points

Expedition 2015 vs. 2016 – UAV improvements

- Flights with high temporal resolution (<= 12h) of calving front
- Using of a VTOL for the temporal high resolution flights
- Different flight plans (detailed front, long tracks)
- Longitudinal profiles with nadir-looking LiDAR

EIF Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Flight plans – High temporal resolution (<= 12h)

- Using of VTOL from the camp to calving front
- Flights every 12h (morning / evening)
- Total of 24 flights

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Flight plans – High geometrical resolution

- Using of X8 Skywalker for overview at the calving front
- Flights every 6 days
- Total of 2 flights

Flight plans – High geometrical resolution

• Quantification and recording of crevasses

18

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Skywalker X8 Version 2

VGC 2016 Bergen

Results – Orthophoto mosaicsJuly 7th 2015July 11th 2015July 7th 2015July 16th 2015

Results – Initiating calving events

21

3 - 4 events in < 1 month ~ 20% of the yearly amount of calving

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Laboratory of Hydraulics, Hydrology and Glaciology

Laboratory of Hydraulics, Hydrology and Glaciology (VAW)

Results – Derived analysis

Velocity field

Maximal principal strain

Maximal principal directions

Shear strain component

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Summary – Workflow and Results

Flight planning

Hydrology and Glaciology

VGC 2016 Bergen

23

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Summary – Homemade UAV

Conception and assembling:

- + Very economic but durable standard RC components
- + Free configuration and extension
- + Full access to flight parameters
- + Access to all log parameters and -analysis
- Massive underestimation of the complexity and needed effort
- Application:
 - + Very efficient behaviour during the flight
 - + Well and efficient to fix
 - + Complex missions and large distances
 - Demanding pre-flight-procedure and launching
 - Large landing space

VGC 2016 Bergen

Thank you for your attention

